

EXCMO. AYUNTAMIENTO DE DAROCA.

Julio de 2009

EL INGENIERO AGRÓNOMO

REF.: 3.326 ED. 00 D. ANTONIO ROMEO MARTÍN Col. 754.

c/ Francisco de Vitoria, 9, entresuelo B, 50008 Zaragoza 2 976 22 26 85 3 976 23 47 94 rom8@rom8.com

ED. 00

INDICE:

MEMORIA

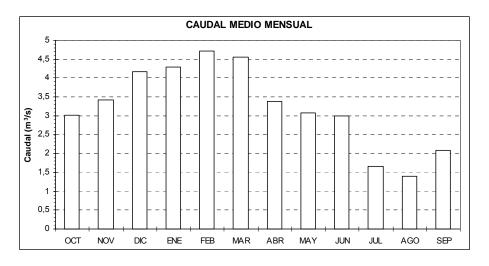
PLANOS

INDICE:

1.	INTRODUCCIÓN	3
2.	OBJETIVOS	5
3.	METODOLOGÍA	6
4.	CARACTERIZACIÓN HIDROLÓGICA DE LAS CUENCAS VERTIENT	ES8
5.	ANÁLISIS DE PRECIPITACIONES EXTREMAS	11
į	5.1. PRECIPITACIONES MÁXIMAS DE DURACIÓN INFERIOR A	. 24
ŀ	HORAS	15
6.	CÁLCULO DE CAUDALES DE AVENIDAS	17
(6.1. APLICACIÓN DEL MÉTODO RACIONAL	17
	6.1.1. ESCORRENTÍA	18
	6.1.2. CAUDALES PUNTA	24
(6.2. APLICACIÓN DEL MÉTODO DEL HIDROGRAMA UNITARIO	26
	6.2.1. TORMENTA DE PROYECTO	
	6.2.2. HIDROGRAMAS	30
	DETERMINACIÓN DE LA SUPERFICIE INUNDABLE POR	
A(GUACEROS	35
8.	CONCLUSIONES	37

ANEXO I. REPORTAJE FOTOGRÁFICO

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA


1. INTRODUCCIÓN

El territorio que engloba el término municipal de Daroca pertenece en su mayor parte a la subcuenca del río Jiloca, tan sólo un resquicio situado al noreste, pertenece a la subcuenca del Perejiles. Ambas corrientes son subsidiarias del río Jalón por su margen derecha.

Sólo existe una corriente de agua continua superficial, se trata del río Jiloca, que a su paso por Daroca posee unos caudales medios mensuales, tomados en la estación de aforo EA 10 (Jolica en Daroca) y publicado por la Confederación Hidrográfica del Ebro, que son los siguientes:

PARÁMETROS	Jiloca en Daroca E.A.10
Q medio m ³ /s	3,4
Q medio Máximo m³/s	4,7
Q medio Mínimo m ³ /s	1,7

Tabla 1.- Caudales medios mensuales del río Jiloca (CHE)

Gráfica 1.- Caudales medios mensuales del río Jiloca (CHE)

ED. 00

Otra corriente superficial de importancia, aunque no continua, es la Rambla de la Mina, tanto por el caudal que puede llegar a albergar como por su situación junto al núcleo urbano. Se trata de una corriente de agua no continua, de extensa cuenca, que se activa durante los fenómenos tormentosos ligados a los frentes equinocciales o a días sucesivos de intensas lluvias. Es en este momento cuando la rambla alberga un caudal continuo, recogiendo el agua de escorrentía de su extensa cuenca.

La Rambla de la Mina discurría inicialmente por la calle Mayor de Daroca siendo esta un barranco natural que funcionaba como tal cuando las lluvias eran fuertes. Por ello se decidió la construcción de un túnel, denominado "La Mina", con la finalidad de desviar las aguas directamente hacia el río Jiloca.

Su construcción comenzó en 1555, acabando la perforación del túnel en 1560 y el resto de las obras dos años más tarde. Tiene una longitud de 780 varas (unos 650 metros), y una sección de 8 varas de anchura (6,7 metros) y otras tantas de altura.

Parte de la zona afectada por la ampliación de la zona urbanizable del municipio se encuentra en el área de influencia de la Rambla de la Mina. Este cauce presenta una circulación superficial ocasional, así recoge ocasionalmente movimientos subsuperficiales (aguas subálveas) del agua infiltrada entre los recubrimientos más permeables y el sustrato rocoso de menor permeabilidad.

2. OBJETIVOS

Los objetivos que se persiguen en este Estudio de Inundabilidad son los siguientes:

- Caracterizar globalmente las zonas con riesgo de inundación en todo el término municipal, con especial hincapié, en aquellas áreas cercanas al casco urbano y cuyo factor de cambio de uso del suelo es susceptible tanto en el presente PGOU mediante reclasificaciones como en futuros desarrollos.
- Dotar de protección mediante clasificación como suelo no urbanizable de domino público (en algunos casos será de especial protección) en el PGOU lo diagnosticado con riesgo de inundación en el presente Estudio de Inundabilidad y que se ciñe, sobre todo, a la protección de los cauces, conos de deyección, vías intensas de desagüe, etc. del término municipal.
- Proteger, al mismo tiempo y en consonancia con el punto anterior, el dominio público hidráulico como suelo no urbanizable de dominio público, así como las zonas de inundación, salvo aquellas que estén clasificadas como suelo urbano, supuesto éste en el que se mantendrán tal consideración.

OM VIII GENIERIA ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

3. METODOLOGÍA

Se pretende determinar el caudal punta que puede discurrir por el cauce de la Rambla de La Mina para que puedan evaluarse los problemas reales y pueda diseñarse una solución técnica que evite situaciones catastróficas.

El primer paso para la realización de este estudio ha sido la determinación de la cuenca vertiente superficial. Esta cuenca abarca terrenos pertenecientes a los términos municipales de Daroca, Retascón y Nombrevilla.

Las características de esta cuenca son básicas para conocer ciertos parámetros hidrológicos como el tiempo que tardaría en llegar la gota que cae más alejada hasta el desagüe o la capacidad de infiltración que presenta y que desembocará en un coeficiente de escorrentía.

El caso siguiente es determinar el régimen de precipitaciones para finalizar con el cálculo del caudal punta que será el de referencia para buscar soluciones técnicas.

CONCEPTO DE RIESGO

Siempre que se trabaja con un documento técnico de estas características, un parámetro muy importante a tener en cuenta es la fiabilidad o nivel de confianza que debe darse a las conclusiones que se obtengan. Se debe tener presente que se trabaja fundamentalmente con precipitaciones de importante magnitud (se están evaluando caudales que por sí pueden inundar zonas de trabajo) y ocurrencia de probabilidad relativa.

No hay que olvidar que el riesgo de ocurrencia (probabilidad) de una determinada avenida está íntimamente ligado con el concepto de periodo de retorno.

La probabilidad de ocurrencia expresada en tanto por uno (P) de cada uno de los periodos de retorno (T) determina el riesgo y será la siguiente:

T	Р
2	0,5
5	0,2
10	0,1
25	0,04
50	0,02
100	0,01
500	0,002

Tabla 2.- Relación Periodo de Retorno-Probabilidad de ocurrencia

No obstante, y considerando la legislación sectorial de Aguas. Concretamente, la normativa adoptada por el Plan Hidrológico de la Cuenca del Ebro (donde se ubica la zona de estudio) en lo referente a materias de protección humana frente a avenidas se especifica que "se considerará zona inundable la delimitada por los niveles teóricos que alcanzarían las aguas en las avenidas cuyo período estadístico de retorno sea de 500 años".

Para el desarrollo de este estudio se ha seguido una metodología suficientemente contrastada en trabajos de este tipo, y que consta de las siguientes fases o apartados:

- Estudio y comprensión de la zona de estudio. <u>Identificación</u>, <u>delimitación</u> y <u>caracterización hidrológica de las cuencas vertientes</u>. Obtención de parámetros hidrológicos (superficies, pendientes, tipo de vegetación, litología...) necesarios para la estimación posterior de tipos de concentración, coeficientes de escorrentía y otros datos.
- Análisis y estudio del régimen de precipitaciones. Se han obtenido datos de precipitación de la estación de Daroca de la Agencia Estatal de Meteorología, y con ellos se ha realizado el cálculo de intensidad de lluvia a partir de la Distribución Gumbel.
- Cálculo de caudales punta para las diferentes cuencas objeto de estudio
- <u>Determinación de superficie inundada</u> como consecuencia de las avenidas.

A continuación pasamos a describir cada una de estas fases y a aportar los resultados de cada análisis.

4. CARACTERIZACIÓN HIDROLÓGICA DE LAS CUENCAS VERTIENTES

Se ha realizado el análisis de las cuencas dividiendo estas en dos grupos diferenciados, por un lado las cuencas que vierten al Polígono Industrial de Daroca y por otro las cuencas aportantes a la Rambla de La Mina en las zonas próximas al casco urbano de Daroca. Estas cuencas se presentan en el PLANO Nº 2.

Para el cálculo de los caudales líquidos, nos interesarán las características de las redes hidrográficas de las diferentes cuencas. Los datos son los siguientes:

CUENCAS VERTIENTES AL POLÍGONO INDUSTRIAL DE DAROCA

	CUENCA 1	CUENCA 2	CUENCA 3	CUENCA 4	CUENCA 5
Superficie aportante (km²)	2,7	1,9	0,3	2,2	4,1
Altitud máxima del cauce (m)	990	990	860	940	935
Altitud mínima del cauce (m)	800	805	805	810	805
Longitud hidrológica más larga (m)	2.744	2.952	782	2.933	3.212

Tabla 3.- Parámetros de la red de drenaje del Polígono Industrial de Daroca.

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Superficie aportante (km²)	0,3	0,4	0,2	0,3	0,1	0,1
Altitud máxima del cauce (m)	905,0	940,0	900,0	930,0	890,0	885,0
Altitud mínima del cauce (m)	800,0	795,0	795,0	795,0	790,0	785,0
Longitud hidrológica más larga (m)	781,0	1.385,0	805,0	1.138,0	628,0	602,0

Tabla 4.- Parámetros de las cuencas vertientes próximas al casco urbano de Daroca.

	Nº 7	Nº 8	Nº 9	Nº 10
Superficie aportante (km²)	0,2	0,5	0,2	0,1
Altitud máxima del cauce (m)	880,0	925,0	875,0	860,0
Altitud mínima del cauce (m)	785,0	785,0	785,0	780,0
Longitud hidrológica más larga (m)	596,0	1.241,0	632,0	373,0

Tabla 5.- Parámetros de las cuencas vertientes próximas al casco urbano de Daroca.

Y, a partir de estos valores, calcularemos lo siguiente:

> Pendiente media del cauce principal (%):

$$j = \frac{H_{\text{max}} - H_{\text{min}}}{L} \cdot 100$$

Donde:

- H_{max}: Altitud del punto más alejado de la salida.
- H_{min}: Altitud del punto de salida.
- L: Longitud hidrológica más larga.
- > Tiempo de concentración (horas):

$$t_c = \left(\frac{0.87 \cdot L^3}{H_{\text{max}} - H_{\textit{Min}}}\right)^{0.385}$$

Donde:

- H_{max}: Altitud del punto más alejado de la salida (m).
- H_{min}: Altitud del punto de salida (m).
- L: Longitud hidrológica más larga (km).

Y obtenemos:

CUENCAS VERTIENTES AL POLÍGONO INDUSTRIAL DE DAROCA

	CUENCA 1	CUENCA 2	CUENCA 3	CUENCA 4	CUENCA 5
Pte. Pendiente (%)	6,92	6,27	7,03	4,43	4,05
Tc. Tiempo de concentración (h)	0,404	0,444	0,153	0,504	0,560

Tabla 6.- Parámetros hidrológicos para los cálculos de caudales.

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Pte. Pendiente (%)	13,4	10,5	13,0	11,9	15,9	16,6
Tc. Tiempo de concentración (h)	0,119	0,203	0,123	0,167	0,094	0,090

Tabla 7.- Parámetros hidrológicos para los cálculos de caudales.

ED. 00

	Nº 7	Nº 8	Nº 9	Nº 10
Pte. Pendiente (%)	15,9	11,3	14,2	21,4
Tc. Tiempo de concentración (h)	0,090	0,182	0,099	0,056

Tabla 8.- Parámetros hidrológicos para los cálculos de caudales.

ED. 00

5. ANÁLISIS DE PRECIPITACIONES EXTREMAS

Las avenidas son fenómenos naturales que se producen con cierta regularidad temporal. En este sentido, el concepto de "frecuencia de avenida" hace referencia al tiempo promedio transcurrido entre ocurrencias de avenidas de una determinada magnitud.

El evento que produce la avenida (la totalidad de las precipitaciones que lo generan) se traduce, para una sección del cauce, en un hidrograma de medida.

El caudal puede ser considerado como una variable aleatoria continua, de la cual puede estudiarse su distribución estadística. Esta distribución se ajusta a una ley teórica de probabilidad. Fischer y Tippet (1928) demostraron que las distribuciones de valores máximos extremos seleccionados de conjuntos de muestras de cualquier distribución de probabilidad, convergen en una de las tres formas de "distribuciones de valores extremos". Las leyes probabilísticas estudiadas desde entonces son muy numerosas, pero de entre las que destacan las de Gumbel y Log Pearson III.

En nuestro caso, utilizaremos el Método de Gumbel, que a continuación se describe sucintamente.

La distribución de frecuencias Gumbel (1941), también conocida como el método de Distribución Extrema de Probabilidades tipo I, ha venido siendo utilizada con buenos resultados en el estudio de frecuencia s de valores extremos de variables meteorológicas, entre ellas la precipitación máxima en 24 horas y la precipitación en periodos más cortos de tiempo.

Por lo tanto, para calcular la serie de precipitaciones máximas en 24 horas para distintos períodos de retorno, supondremos que ésta se ajusta a una distribución de valores extremos tipo Gumbel (bondad según el test de Kolmogorov-Smirnov).

La función de distribución tiene la siguiente expresión:

$$F(x) = e^{-e^{-\alpha(x-\mu)}}$$

ED. 00

Donde:

- F(x): es la probabilidad de que en un año no se supere el valor de precipitación x.
- α y μ son valores que se relacionan con la media y la desviación típica de la serie de precipitaciones máximas.

Esta función de distribución se puede desglosar en:

$$F(x) = e^{-e^{-y}}$$

Donde F(x) es la función de densidad, es decir la probabilidad de no superar el valor de x. La variable y (variable de Gumbel) es:

$$y = \alpha(x - x_0)$$

Según la teoría de la probabilidad:

$$G(x) = 1 - F(x)$$

G(x) representará la probabilidad del suceso complementario, es decir la probabilidad de superar la magnitud x.

Según la definición de periodo de retorno T se tiene:

$$\frac{1}{T} = 1 - e^{-e^{-y}}$$

o bien tomando logaritmos naturales dos veces.

$$y = -LnLn\frac{T}{T-1}$$

En el método de Gumbel el valor de la variable x, estimada para un periodo T, se obtiene según la expresión:

$$x = \bar{x} + KS$$

Siendo:

- x = media de los valores xy conocidos
- S=desviación típica de estos valores

El valor K se obtiene de la fórmula de la variable de Gumbel

$$y = \overline{y_n} + K\sigma_n$$

Donde y, σ_n , son función de la longitud de la muestra n, por lo que:

$$K = \frac{y - \overline{y_n}}{\sigma_n}$$

y si sustituimos en $x = \bar{x} + KS$ queda:

$$x = \overline{x} + \frac{y - \overline{y_n}}{\sigma_n} S$$

Por otra parte la distribución de Gumbel es:

$$y = -LnLn\frac{T}{T-1}$$

$$x = x + \frac{LnLn\frac{T}{T-1} - y_n}{\sigma_n}S$$

n	у	σ_n	n	у	σ_{n}	n	у	σ_n
8	0,4843	0,9043	36	0,5410	1,1313	64	0,5533	1,1793
10	0,4952	0,9497	38	0,5424	1,1363	66	0,5538	1,1814
12	0,5035	0,9833	40	0,5436	1,1413	68	0,5543	1,1834
14	0,5100	1,0095	42	0,5448	1,1458	70	0,5548	1,1854
16	0,5157	1,0316	44	0,5458	1,1499	80	0,5569	1,1938
18	0,5202	1,0493	46	0,5468	1,1538	90	0,5586	1,2007
20	0,5236	1,0628	48	0,5477	1,1574	100	0,5600	1,2065
22	0,5268	1,0754	50	0,5485	1,1607	150	0,5646	1,2253
24	0,5296	1,0864	52	0,5493	1,1638	200	0,5672	1,2360
26	0,5320	1,0961	54	0,5501	1,1667	300	0,5699	1,2479
28	0,5343	1,1047	56	0,5508	1,1696	400	0,5714	1,2545
30	0,5362	1,1124	58	0,5515	1,1721	500	0,5724	1,2588
32	0,5380	1,1193	60	0,5521	1,1747	750	0,5738	1,2651
34	0,5396	1,1255	62	0,5527	1,1770	1000	0,5745	1,2685

Tabla 9.- Valores de y, σ_n , en función de n.

Los datos encontrados son:

AÑO	P _{max 24 horas} (mm)	I _{max} (mm/h)
1930	54,00	2,25
1931	29,00	1,21
1932	62,00	2,58
1933	62,00	2,58
1934	32,00	1,33
1935	22,00	0,92
1936	28,00	1,17
1937	20,00	0,83
1938	27,00	1,13
1939	43,00	1,79
1940	30,00	1,25
1941	24,00	1,00
1942	33,00	1,38
1943	24,00	1,00
1944	37,00	1,54
1945	38,00	1,58
1945	29,00	1,21
1947	32,00	1,33
1947	22,00	0,92
1949	36,00	1,50
1950	36,00	1,50
1950		
1951	36,00	1,50
1952	55,00	2,29 1,21
	29,00	
1954	49,00	2,04
1955	25,00	1,04
1956	33,00	1,38
1957	51,00	2,13
1958	34,00	1,42
1959	26,00	1,08
1960	43,00	1,79
1961	38,00	1,58
1962	44,00	1,83
1963	30,00	1,25
1964	25,00	1,04
1965	25,00	1,04
1966	34,00	1,42
1967	31,00	1,29
1968	59,00	2,46
1969	30,00	1,25
1970	30,00	1,25
1971	45,00	1,88
1972	47,00	1,96
1973	45,00	1,88
1974	41,00	1,71
1975	44,00	1,83
1976	29,00	1,21
1977	28,00	1,17
1978	36,00	1,50

AÑO	P _{max 24 horas} (mm)	I _{max} (mm/h)
1979	77,00	3,21
1980	25,00	1,04
1981	35,00	1,46
1982	27,00	1,13
1983	24,00	1,00
1984	43,00	1,79
1985	40,00	1,67
1986	47,00	1,96
1987	26,00	1,08
1988	29,00	1,21
1989	39,00	1,63
1990	32,00	1,33
1991	37,00	1,54
1992	21,00	0,88
1993	32,00	1,33
1994	31,00	1,29
1995	36,00	1,50
1996	30,00	1,25
1997	24,00	1,00
1998	15,00	0,63
1999	26,00	1,08
2000	25,00	1,04
2001	10,00	0,42
2002	37,00	1,54
2003	42,00	1,75
2004	21,00	0,88
2005	29,00	1,21
2006	58,00	2,42

Tabla 10.- P_{max 24h} Estación meteorológica de Daroca

ED. 00

Se obtienen los siguientes valores de los datos de la estación meteorológica:

$$n = 78$$

Media = 34,36

 $S^2 = 133,43$
 $S = 11,55$
 $y_n = 0,5569$
 $\sigma_n = 1,1938$

El periodo de retorno considerado es el de 500 años, de manera que tras el ajuste Gumbel, se obtiene un resultado de $P_{\text{max 24 h}} = 89,09 \text{ mm}$.

A continuación se muestran los resultados para diferentes periodos de retorno.

T (años)	P max 24 h
2	32,52
5	43,48
10	50,74
100	73,48
500	89,09

Tabla 11.- Ajuste Gumbel para diferentes periodos de retorno

5.1. PRECIPITACIONES MÁXIMAS DE DURACIÓN INFERIOR A 24 HORAS

Debido a que no se dispone de datos de pluviógrafos para las cuencas, para precipitaciones de menor duración se va a utilizar la fórmula de Témez, que relaciona la precipitación máxima en 24 horas obtenida anteriormente para el tiempo de retorno considerado con la precipitación máxima en menos horas:

$$\frac{I_t}{I_d} = \left(\frac{I_t}{I_d}\right)^{\frac{28^{0.1} - t^{0.1}}{28^{0.1} - t}}$$

ED. 00

Donde:

- Id: intensidad de la precipitación máxima en 24 horas: $I_d = \frac{P_{\text{max} \, 24h}}{24}$
- It: intensidad de la precipitación máxima en el tiempo t: $I_t = \frac{P_{\text{max}\,t}}{t}$
- t: duración de la precipitación en horas
- I₁/I_d: parámetro regionalizado que toma valores entre 8 y 12. En nuestro caso, el valor es 10

Los resultados obtenidos tras aplicar la fórmula anterior para los tiempos de concentración de las diferentes cuencas son:

CUENCAS VERTIENTES AL POLÍGONO INDUSTRIAL DE DAROCA

	CUENCA 1	CUENCA 2	CUENCA 3	CUENCA 4	CUENCA 5
I _{tc} (mm/h)	60,8	57,8	99,3	53,9	50,9

Tabla 12.- Intensidad de precipitación máxima

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
I _{tc} (mm/h)	111,8	86,3	110,0	95,1	124,5	127,3

Tabla 13.- Intensidad de precipitación máxima

	Nº 7	Nº 8	Nº 9	Nº 10
I _{tc} (mm/h)	126,9	91,2	121,8	156,7

Tabla 14.- Intensidad de precipitación máxima

FD 00

6. CÁLCULO DE CAUDALES DE AVENIDAS

El objetivo del estudio de inundabilidad es el de estimar un caudal asociado a un determinado periodo de retorno o frecuencia de ocurrencia. Posteriormente se realizaría un análisis para de terminar el calado que alcanzaría ese caudal en las zonas objeto de estudio.

Previa definición de la lluvia de proyecto y el modelo de pérdidas, la transformación de lluvia neta o efectiva a caudal puede llevarse a cabo por un método sencillo y ampliamente utilizado para cuencas de pequeño tamaño (Superficie<2,5-3 km²), como es el Método Racional, que solo nos permitirá el cálculo de caudales punta, o bien, a través de métodos más complejos que nos permitirán el cálculo de hidrogramas de caudal, dentro de los cuales el más difundido es el del Hidrograma unitario.

En base al tamaño de las cuencas vertientes incluidas en este estudio, para las diferentes cuencas se han aplicado los siguientes métodos:

- METODO RACIONAL: Se aplica a las cuencas vertientes próximas al casco urbano de Daroca. Estas cuencas se caracterizan por ser de pequeño tamaño y tiempos de concentración muy cortos.
- HIDROGRAMA UNITARIO: Se aplica a las cuencas vertientes al polígono industrial de Daroca.

6.1. APLICACIÓN DEL MÉTODO RACIONAL

Basándonos en el propio concepto del método racional, es de aplicación en cuencas pequeñas, considerándose como orden de magnitud para que el método sea aplicable cuencas cuya superficie sea inferior a 2,5 a 3 km² y tiempo de concentración del orden de 1 hora.

ED. 00

Este método ha sido utilizado para la determinación de los caudales de avenida en las cuencas de menor tamaño incluidas en este estudio, estas son las denominadas anteriormente, "Cuencas vertientes próximas al casco urbano de Daroca".

Este método se basa en la hipótesis de que la duración de la lluvia sea superior al tiempo de concentración de la cuenca por lo que se alcanza el máximo caudal posible y dicho caudal puede mantenerse constante, de forma que el caudal alcanzado procede de todos los puntos de la cuenca, para ello la duración de la tormenta considerada deberá ser igual o superior al tiempo de concentración.

6.1.1. ESCORRENTÍA

No toda la precipitación neta (P) que llega a la superficie de la tierra produce escorrentía, dado que una parte es interceptada por la vegetación y por las microdepresiones del terreno (I_t+M), otra se evapora (E), parte se infiltra en el suelo (I) y, por último, encontramos la que genera escorrentía, que se conoce como precipitación neta o, simplemente, escorrentía (Q).

En síntesis, se establece el siguiente balance:

$$Q = P - (I_t + M) - E - I$$

La escorrentía depende fundamentalmente de dos factores: la cuantía real de las precipitaciones meteorológicas por un lado, y las características de la propia cuenca receptora por otro; dentro de esta última, tiene especial importancia el binomio suelovegetación.

NÚMERO DE CURVA

Existen numerosos procedimientos para estimar la precipitación neta o escorrentía directa (Q). En este estudio se ha utilizado el **Método del Número de Curva**, establecido por el U.S.D.A. *Soil Conservation Service*, por ser el de uso más común y el más adecuado para este caso. Este método se basa en la estimación directa de la escorrentía superficial de una lluvia aislada a partir de las características del suelo, el uso de este, su cubierta vegetal y el aprovechamiento a que está sometida esta última.

FD 00

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

Estos números de curva se introducen en una fórmula en que la precipitación tiene un peso fundamental, que da como resultado la escorrentía directa.

Los suelos se clasifican según alguno de los cuatro grupos siguientes:

- Grupo A: es el que ofrece menor escorrentía y, por lo tanto, mayor permeabilidad, incluso en suelos saturados. Son terrenos profundos, sueltos, con predominio de arena o grava y con muy poco limo o arcilla.
- Grupo B: Incluye los suelos de moderada permeabilidad cuando están saturados, comprendiendo los terrenos arenosos menos profundos que los del grupo anterior, aquellos otros de textura franco – arenosa de mediana profundidad y los francos profundos.
- Grupo C: Incluye los suelos que ofrecen poca permeabilidad cuando están menos saturados.
- Grupo D: Es el que ofrece menor resistencia a la escorrentía. Incluye los suelos que presentan gran impermeabilidad, tales como los terrenos muy arcillosos y profundos con alto grado de tumefacción, los terrenos que presentan en la superficie o cerca de la misma una capa de arcilla impermeable y aquellos otros con subsuelo muy impermeable próximo a la superficie.

Según esto, los distintos tipos de suelo, según su textura, se agrupan del modo siguiente:

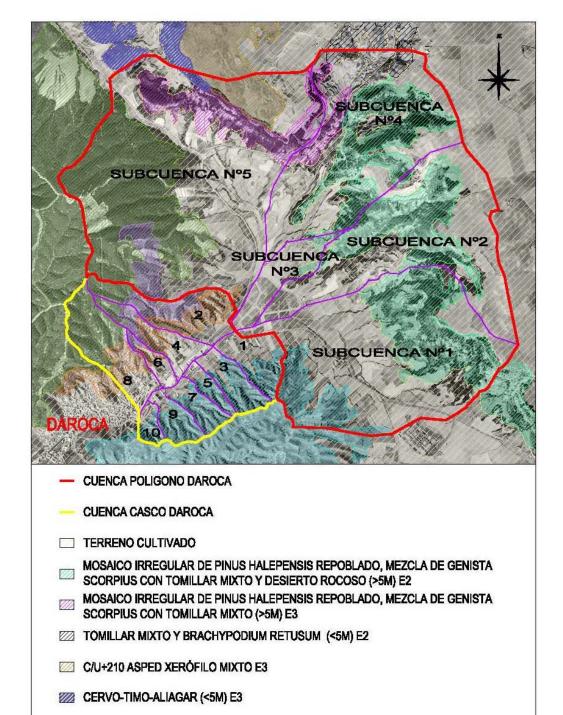
GRUPO	TIPO DE TEXTURA
Α	Arenosa, Arenosa – Franca, Franco - Arenosa
В	Franco – Limosa, Franca, Limosa
С	Franco – Arcillo –Arenosa, Franco – Arcillo –Limosa, Franco – Arcillosa
D	Arcillo – Arenosa, Arcillo – Limosa, Arcillosa

Tabla 15.- Texturas – Grupos hidrológicos.

ED. 00

La tabla que gobierna la asignación de números de curva es la que se presenta a continuación:

	TIPO DE SUELO					
USO DEL SUELO	Α	В	С	D		
Forestal F _{cc} >70%	30	55	70	77		
Forestal F _{cc} 30-70%	36	60	73	79		
Forestal F _{cc} <30%	45	66	77	83		
Arbolado con matorral	30	30	41	48		
Mosaico	43	65	76	82		
Matorral	35	56	70	77		
Pastizal	49	69	79	84		
Cultivos leñosos	35	61	74	81		
Cultivos herbáceos	65	75	82	86		
Eriales	76	80	87	93		
Improductivo	100	100	100	100		


Tabla 16.- Números de curva.

Superponiendo con un GIS el mapa de suelos y el de formaciones vegetales, y teniendo en cuenta los datos que facilita la tabla anterior, se ha generado un mapa del número de curva.

ED. 00

ROM VIII

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

MOSAICO IRREGULAR DE CERVO-TIMO-ALIAGAR Y DESIERTO DE EROSIÓN (<5M) E2

REPOBLACIÓN DE PINUS HALEPENSIS POCO INTEGRADA EN EL MEDIO (>5M) E2

MOSAICO IRREGULAR DE CULTIVOS Y DE PINUS HALEPENSIS REPLOBLADO

MOSAICO IRREGULAR DE CULTIVOS Y LASTO-TIMO-ALIAGAR

ED. 00

El número de curva medio ponderado para las diferentes cuencas es el siguiente:

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
NC	83,2	82,6	82,6	82,8	82,8	83,9

Tabla 17.- Número de curva ponderado

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 7	Nº 8	Nº 9	Nº 10
NC	82,6	80,9	82,4	82,8

Tabla 18.- Número de curva ponderado

ESCORRENTÍA

En base a ese Número de Curva, el *Soil Conservation Service* hace el siguiente análisis:

 Calculamos la capacidad máxima de almacenamiento (mm) que, tras el ajuste de unidades, queda:

$$S = \frac{25.400}{NC} - 254$$

Por lo que:

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Capacidad máx almacenamiento S	51,32	53,53	53,44	52,88	52,890	48,60

Tabla 19.- Capacidades máximas de almacenamiento para las cuencas pequeñas

	Nº 7	Nº 8	Nº 9	Nº 10
Capacidad máx almacenamiento S	53,61	59,81	54,20	52,75

Tabla 20.- Capacidades máximas de almacenamiento para las cuencas pequeñas

ED. 00

Y así definimos el umbral de escorrentía (mm) como:

 $P_0 = 0,2 \cdot S$

Por lo que:

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Umbral de escorrentía P₀	10,26	10,71	10,9	10,58	10,58	9,72

Tabla 21.- Umbral de escorrentía para cuencas pequeñas

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 7	Nº 8	Nº 9	Nº 10
Umbral de escorrentía P₀	10,72	11,96	10,84	10,55

Tabla 22.- Umbral de escorrentía para cuencas pequeñas

El umbral de escorrentía (P_o) ha de corregirse multiplicando los valores obtenidos por un coeficiente corrector con valores que oscilan entre 1 y 4, y que en la zona de estudio asume el valor 2,6. Este coeficiente refleja la variación regional de la humedad habitual en el suelo al comienzo de los aguaceros significativos. Del resultado de su aplicación se obtiene P_o'.

Mapa 2.- Mapa del coeficiente corrector del umbral de escorrentía

FD 00

Obtenido el Umbral de escorrentía corregido se procede al cálculo del coeficiente C de escorrentía que define la proporción de la componente superficial de la precipitación de intensidad I, y que depende de la razón entre la precipitación diaria P_d correspondiente al periodo de retorno y el umbral de escorrentía P_o a partir del cual se inicia ésta.

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

$$C = \frac{(P_{24} - P'_{0}) \cdot (P_{24} + 23 \cdot P_{0}')}{(P_{24} + 11 \cdot P'_{0})^{2}}$$

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Coeficiente de escorrentía	0,300	0,286	0,286	0,290	0,290	0,317

Tabla 23.- Coeficiente de escorrentía

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 7	Nº 8	Nº 9	Nº 10
Coeficiente de escorrentía	0,285	0,251	0,282	0,291

Tabla 24.- Coeficiente de escorrentía

6.1.2. **CAUDALES PUNTA**

Este punto nos permitirá conocer el caudal máximo que genera una precipitación de un tiempo determinado.

En estas cuencas objeto de estudio (con superficie inferior a 3 km²) se asume que hasta alcanzar el tiempo de concentración t_c, la intensidad de lluvia permanece constante.

Para determinar ese máximo caudal se debe usar, como mínimo, un intervalo de tiempo igual a t_c porque, si elegimos otro inferior (a pesar de que la intensidad de lluvia sería mayor), la superficie aportante en ese instante sería inferior a la de la cuenca.

ED. 00

Para realizar este cálculo utilizaremos la Fórmula Racional o de Témez:

$$q_p = K \cdot \frac{C \cdot I \cdot A}{3.6}$$

Donde:

- Q_p: Caudal punta estimado (m³/s).
- K: Coeficiente de uniformidad. Para cuando el T_c tiende a 0, el coeficiente de uniformidad, K tiende a 1, y para T_c muy grandes, tiende a 2. En España se acepta el valor 1,2.
- C: Coeficiente de escorrentía.
- I: Intensidad media máxima (mm/h) para una duración igual al tiempo de concentración.
- A: Área de la cuenca (km²).

Y obtenemos los siguientes valores:

CUENCAS VERTIENTES PRÓXIMAS AL CASCO URBANO DE DAROCA

	Nº 1	Nº 2	Nº 3	Nº 4	Nº 5	Nº 6
Caudales punta (m³/s)	3,498	4,387	2,557	2,834	1,335	1,506

Tabla 25.- Caudales punta (m³/s) estimados.

	Nº 7	Nº 8	Nº 9	Nº 10
Caudales punta (m³/s)	2,260	4,368	2,140	1,371

Tabla 26.- Caudales punta (m³/s) estimados.

FD 00

APLICACIÓN DEL MÉTODO DEL HIDROGRAMA UNITARIO 6.2.

Para calcular el caudal punta de las cuencas aguas arriba del polígono industrial de Daroca aplicamos el método del hidrograma unitario.

Este representa la respuesta de una cuenca a una precipitación uniforme, efectiva (es decir, lluvia que cae con igual intensidad en toda la cuenca y produce solamente escorrentía rápida) y que además es de valor unitario (1 mm).

El concepto de hidrograma unitario tiene su origen en los trabajos de Sherma (1932). Este autor observó que los hidrogramas de las tormentas de una cuenca determinada tenían el tiempo base y la forma similar cuando las precipitaciones que los causaban eran de duración análoga. Si los hidrogramas se reducían a un valor unitario, dividiendo las ordenadas por el valor de la precipitción neta, los hidrogramas eran casi idénticos.

Las hipótesis que asume el modelo del hidrograma unitario son:

- La precipitación efectiva o exceso de lluvia se distribuye uniformemente durante el tiempo de duración del aguacero.
- La precipitación efectiva se distribuye uniformemente a lo largo de toda la superficie de la cuenca.
- El tiempo de duración de la escorrentía superficial (tiempo base) debido a una "precipitación de duración unitaria", es constante.
- Las ordenadas (caudales) de un conjunto de hidrogramas unitarios con el mismo tiempo de duración de la escorrentía superficial (tiempo base), son directamente proporcionales a la respectiva cantidad total de escurrimiento neto (o lluvia neta) representada por cada hidrograma. Esta cantidad equivale a la superficie definida por el hidrograma neto y el eje de las abcisas.

ED. 00

Ante esto se supone:

- Proporcionalidad de la respuesta de la cuenca.
- Superposición de hidrogramas: el hidrograma resultante de una precipitación es la suma, ordenada a ordenada, de los hidrogramas producidos por las tormentas en las que se ha dividido un determinado aguacero.
- Invariabilidad en el tiempo: el hidrograma unitario no depende de la precipitación efectiva, sino sólo de las características morfológicas de la cuenca.

Estas hipótesis no se satisfacen plenamente en la práctica. Sin embargo, cuando los datos de precipitación y caudal generado utilizados en la obtención del hidrograma unitario de la cuenca son seleccionados adecuadamente, de forma que las condiciones anteriores se cumplan dentro de los márgenes razonables, la teoría del hidrograma unitario proporciona resultados válidos a efectos prácticos.

La determinación del caudal de avenida se realiza con la metodología de hidrograma unitario. Se trata de un método de transformación de lluvia efectiva en caudal. La lluvia efectiva representa el mismo volumen que la escorrentía directa, pero la distribución temporal es diferente. El hidrograma unitario es el producido por la unidad de escorrentía. Podemos imaginar el hidrograma unitario como un proceso matemático, mediante el cual, introduciendo un hietograma de precipitación efectiva, obtenemos un hidrograma que representa caudal- tiempo y la escorrentía como el área bajo la curva.

6.2.1. TORMENTA DE PROYECTO

En un estudio hidrológico no solo es necesario conocer la cantidad de lluvia asociada a una tormenta de una frecuencia y duración determinados, sino que también es necesario saber la distribución en el tiempo de la intensidad de lluvia en el transcurso de la tormenta. Para realizar esta distribución existen diferentes métodos, en este caso se ha obtenido la tormenta de proyecto usando las relaciones I-D-F.

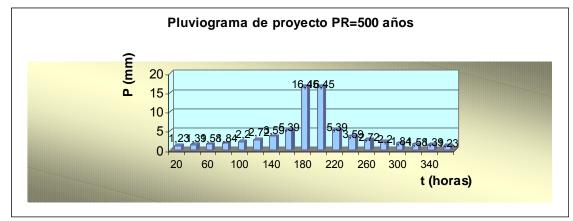
FD 00

Las curvas Intensidad-Duración-Frecuencia (IDF) representan un nivel de información global referente al comportamiento pluviométrico de una zona. Su construcción se realiza analizando los registros de todas las tormentas y sus periodos más intensos de precipitación. Estas intensidades se ordenan para cada uno de los periodos de tiempo considerados (5, 10, 15 minutos, etc) en función de su valor, realizando un tratamiento estadístico de los datos y asignando periodos de retorno. Los resultados se presentan en forma de curva, pudiéndose ajustar alguna expresión de tipo analítico (hipérbola, etc) de manera que se obtienen fórmulas como las tipo Montana, Talbot o Keifer-Chu, en función del tipo de expresión escogida.

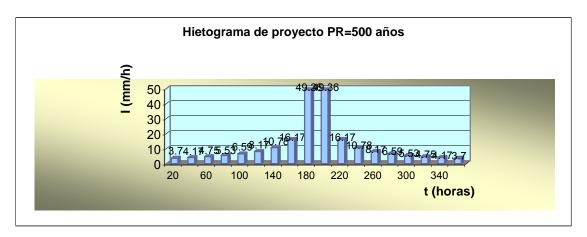
Dado que las curvas IDF recogen una información histórica de la pluviometría de la cuenca, pueden ser un punto de partida para construir a partir de ellas la lluvia de proyecto que emplearemos en nuestro proceso hidrológico.

En los métodos de diseño hidrológicos actuales, se realiza un análisis del flujo no permanente obteniendo como resultado hidrogramas en puntos determinados de la cuenca. Para ello es necesario contar con una distribución temporal de la precipitación. Para este propósito, uno de los métodos más utilizados es el de los bloques alternados.

Método de los bloques alternados

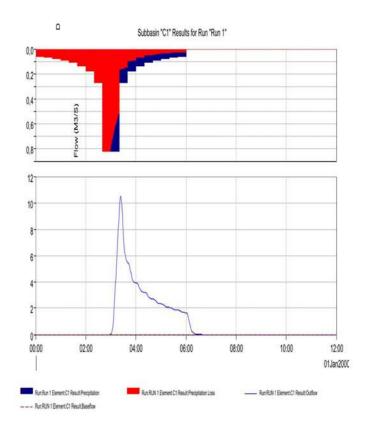

El pluviograma de proyecto producido por este método especifica el volumen de precipitación que ocurre en n intervalos de tiempo sucesivos de duración Δt , sobre una duración total también especificada previamente, $T_d = n\Delta t$. La metodología a seguir es la siguiente:

- Se selecciona el periodo de retorno de diseño (500 años).
- Se calcula la intensidad utilizando la curva IDF para Δt, 2Δt, ..., nΔt.
- Se calcula el volumen de precipitación multiplicando la intensidad por la duración.
- Se calcula la cantidad de precipitación correspondiente a cada intervalo de tiempo tomando diferencias entre valores sucesivos de volumen de precipitación.



 Se reordenan los bloques de modo que la intensidad máxima ocurra en el centro de la duración requerida T_d y que los demás bloques queden en orden descendente alternativamente hacia la derecha y hacia la izquierda del bloque central para formar el pluviograma de diseño.

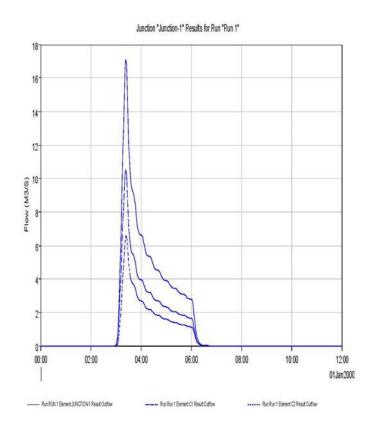
Se estima una duración de la lluvia de 6 horas de duración por ser el más aceptado para este tipo de estudios por la comunidad científica. Una vez determinada la duración de la tormenta, la determinación del pluviograma y el hidrograma sintético se basa en las curvas I-D-F con los métodos explicados anteriormente.


Gráfica 2.- Pluviograma para Periodo de Retorno de 500 años

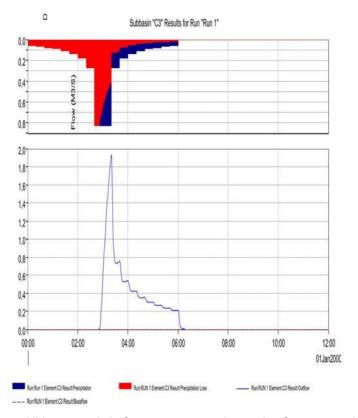
Gráfica 3.- Hietograma para Periodo de Retorno de 500 años

6.2.2. HIDROGRAMAS

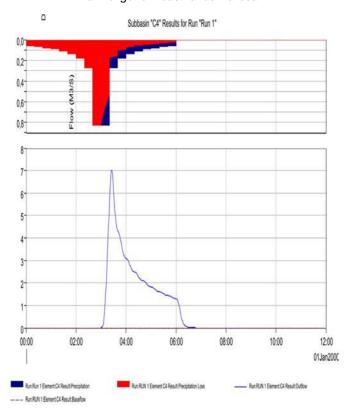
Aplicando la metodología del hidrograma unitario con el difundido programa HEC-HMS 3.3, se han obtenido los hidrogramas individuales de cada cuenca, así como, el hidrograma conjunto de las cinco cuencas que desembocan en el polígono industrial de Daroca.



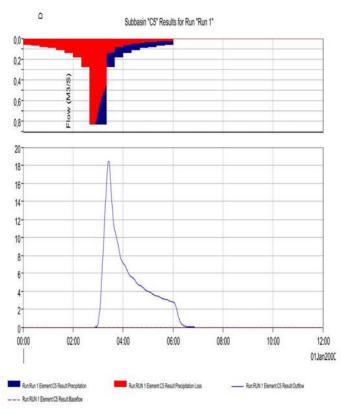
Gráfica 4.- Hidrograma de la Cuenca 1 perteneciente a las Cuencas vertientes al Polígono Industrial de Daroca.



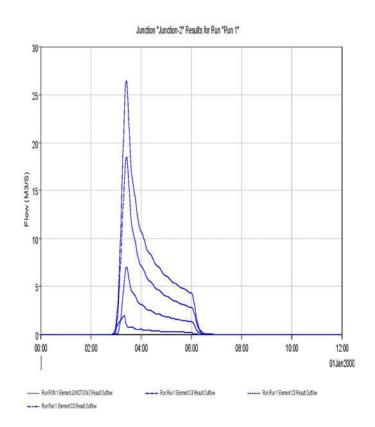
Gráfica 5.- Hidrograma de la Cuenca 2 perteneciente a las Cuencas vertientes al Polígono Industrial de Daroca.



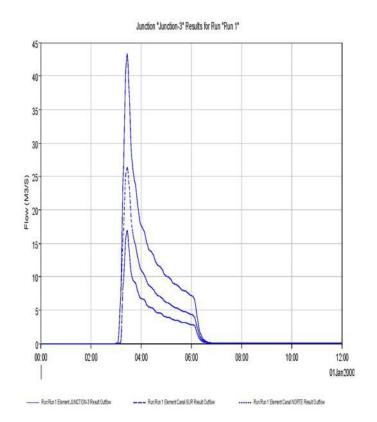
Gráfica 6.- Fusión Hidrogramas de las Cuencas 1 y 2.



Gráfica 7.- Hidrograma de la Cuenca 3 perteneciente a las Cuencas vertientes al Polígono Industrial de Daroca.



Gráfica 8.- Hidrograma de la Cuenca 4 perteneciente a las Cuencas vertientes al Polígono Industrial de Daroca.

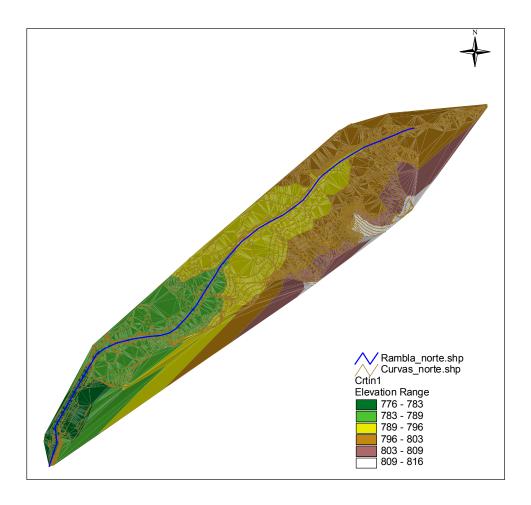

Gráfica 9.- Hidrograma de la Cuenca 5 perteneciente a las Cuencas vertientes al Polígono Industrial de Daroca.

Gráfica 10.- Fusión Hidrogramas de las Cuencas 2, 3 y 4.

ED. 00

Gráfica 11.- Hidrograma resultante a la salida del Polígono Industrial de Daroca.

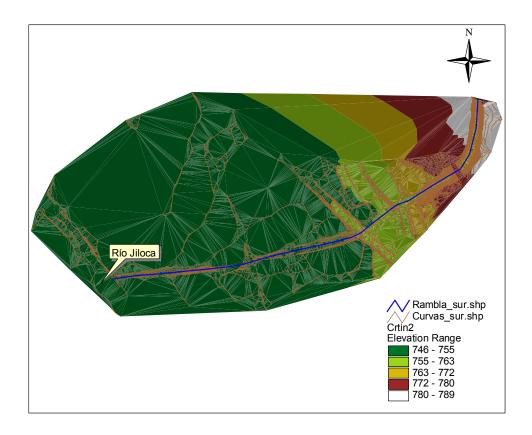
Así se obtiene un caudal punta asociado al periodo de retorno estudiado (500 años) resultante de las aportaciones de las Cuencas vertientes al Polígono Industrial de Daroca de 43,03 m³/s.


7. DETERMINACIÓN DE LA SUPERFICIE INUNDABLE POR LOS AGUACEROS

Con estos datos de caudales punta y con el estudio de la orografía del terreno hemos pasado a modelizar las superficies inundables.

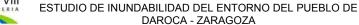
Para ello era necesario disponer de una cartografía con un nivel de detalle suficiente como para que el resultado fuera fiable. Para ello se realizó un levantamiento de la zona con una escala de detalle 1:1.000 alcanzando una precisión de un metro.

A partir de la altimetría obtenida se ha creado un Modelo Digital de Elevaciones con un Sistema de Información Geográfica.


En el entorno de casco urbano de Daroca, donde nos interesa estudiar la inundabilidad este modelo digital puede representarse con la siguiente imagen:

Mapa 3.- Modelo digital del terreno. Zona NORTE Rambla La Mina

ED. 00


Mapa 4.- Modelo digital del terreno. Zona SUR Rambla La Mina

A partir de este modelo de elevaciones se ha realizado el siguiente análisis:

- Con un sistema de información geográfica se analiza toda la información geométrica necesaria (determinación del cauce principal, de las márgenes, de las secciones transversales,...).
- Se crea un fichero de importación que pueda ser usado por un programa de modelización hidrológica.
- En este programa de modelización (el usado ha sido Hec-Ras 3.1.3 del Hydrologic Engineering Center de EE.UU.) se introducen los datos de flujo (caudales punta anteriormente calculados, condiciones de flujo, números de Manning,...).
- Una vez disponibles los datos geométricos y de flujo se pone en funcionamiento la modelización y se obtiene un fichero de exportación para que vuelva a poder ser utilizado en el SIG.
- Se representa espacialmente la inundabilidad calculada.

De esta forma, para esa zona considerada, la inundabilidad viene representada sobre ortofotografía en el plano Nº 3.

8. CONCLUSIONES

Como se ha analizado en el presente Estudio de Inundabilidad, las inundaciones a lo largo de los siglos han producido una confirmación y reincidencia del riesgo existente en la zona. En este sentido, el hecho de que actuaciones humanas pretéritas hayan hecho que algunos barrancos estén ocupados y hayan sido encauzados entre el entramado urbano. Actualmente, el suelo urbano ocupa parte de estos antiguos barrancos, pero también el agrícola los propios aterrazamientos y abancalamientos para puesta en marcha del uso agrícola, los que han propiciado las ocupaciones de los cauces.

Esta particularidad hace que el presente Estudio de Inundabilidad haya tenido en cuenta los cauces naturales existentes en el término municipal con los encauzados por el uso urbano (u otro uso) y así reconstruir los antiguos episodios de inundación (la utilización de fotografía aérea y bibliografía ha sido decisiva).

En el presente Estudio de Inundabilidad se pretende mantener expeditos los cauces de ramblas y barrancos susceptibles de generar avenidas extraordinarias en caudal y pico de crecida ante precipitaciones torrenciales de fuerte intensidad horaria. A partir de dicha consideración de primera medida de prevención se ha de realizar, como paso previo a la aprobación y ejecución de un Sector de Suelo Urbanizable, un preceptivo Estudio de Inundabilidad con los requerimientos mínimos exigidos por el Plan Hidrológico de la Cuenca del Ebro en lo referente a materias de protección humana frente a avenidas, que tengan en consideración las características hidráulicas de cada uno de los cauces que por su cercanía pudieran influir o no en los sectores analizados. En la mayoría de estos casos, es decir, sectores afectados por la presencia o intrusión de aparatos fluviales se ha analizado en el presente Estudio de Inundabilidad los orígenes, causas y consecuencias de las históricas inundaciones cuyo reflejo fiel se ha transmitido en el campo a raíz de los rasgos geomorfológicos.

Tras el estudio de los resultados del análisis hidrológico e hidráulico realizado se observan las siguientes deficiencias existentes en el cauce de la Rambla La Mina.

ED. 00

- El tramo inicial objeto de estudio que se inicia en el cruce de la Rambla La Mina con la carretera A-1506 y transcurre paralelo a la N-234 en dirección al casco urbano de Daroca, la llanura de inundación natural, ha sido ocupada por construcciones industriales y ganaderas provocando el encajonamiento del cauce del barranco en varios puntos y con ello, la elevación del calado en el cauce. Estas construcciones se han concentrado mayoritariamente en la margen derecha del cauce provocando el aumento de la superficie inundada en la margen izquierda de la rambla.
- En la zona donde se ubica el cuartel de la Guardia Civil, se ha construido una urbanización de unifamiliares con acceso mediante un puente de 6 metros de anchura y 2,20 m de altura hasta base de tablero, que cruza la Rambla de La Mina. Este puente, según los cálculos realizados, resulta insuficiente para evacuar el caudal punta obtenido en los cálculos, provocando la inundación parcial de la carretera N-234. Aguas abajo del puente se produce el desbordamiento de la rambla en su tramo encauzado por la margen izquierda provocando la inundación de la urbanización de viviendas unifamiliares.
- Tras atravesar las aguas el túnel "La Mina", se encauzan mediante un barranco natural para posteriormente proseguir por un canal de amplias dimensiones realizado con muros de piedra. Este canal, debido al paso del tiempo, ha ido acumulando sedimentos en las zonas con baja pendiente provocando la disminución de la sección del mismo y con ello aumentando el riesgo de inundaciones. De hecho, en algunos puntos del mismo se produce su desbordamiento por estas causas. También, hay que mencionar que la acción del hombre sobre el canal, ha provocado la rotura en varios puntos de los muros de contención laterales, provocando en momentos de avenida, la entrada de agua a zonas consideradas en el P.G.O.U. como urbanizables.
- En el tramo final de la rambla, antes de su desembocadura en el río, la vegetación ha reducido significativamente la capacidad de evacuación del cauce de la rambla, provocando con ello la inundación de las zonas colindantes al cauce.

ED. 00

Se puede concluir, tras el análisis de los resultados que las afecciones provocadas por la avenida de 500 años en los terrenos colindantes al cauce natural de la Rambla de la Mina, se pueden minimizar mejorando el estado de las obras hidráulicas existentes y realizando un plan de conservación de las márgenes cauce. Si se realizaran estas actuaciones, sería necesaria la realización de un nuevo estudio en el que se reflejaran las modificaciones efectuadas sobre el cauce para determinar los efectos reales sobre el comportamiento del caudal de avenida sobre el mismo.

Zaragoza, julio de 2009

Z/M.

Fdo.: Antonio Romeo Martín Ingeniero Agrónomo al servicio de ROM VIII Ingeniería, S. L.

Colegiado Nº: 745

ED. 00

ED. 00

ANEXO I. REPORTAJE FOTOGRÁFICO

PÁGINA

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

ED. 00

ED. 00

Pk 2+970

Comentarios:

Puente de carretera A-1504 sobre Rambla La Mina

Pk 2+800

Comentarios:

Tramo Rambla La Mina

Pk 2+635

Comentarios:

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

Pk 2+620

Comentarios:

Tramo Rambla La Mina

Pk 2+550

Comentarios:

Tramo Rambla La Mina

Pk 2+470

Comentarios:

Tramo Rambla La Mina encauzado entre naves.

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

Pk 2+380

Comentarios:

Tramo Rambla La Mina encauzado entre naves.

Pk 2+250

Comentarios:

Tramo Rambla La Mina encauzado por su margen derecha con edificaciones.

Pk 2+210

Comentarios:

Pk 2+130

Comentarios:

Tramo Rambla La Mina.

Pk 2+070

Comentarios:

Tramo Rambla La Mina.

Pk 2+030

Comentarios:

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

Pk 2+000

Comentarios:

Tramo Rambla La Mina.

Pk 1+900

Comentarios:

Tramo Rambla La Mina.

Pk 1+870

Comentarios:

ED. 00

Pk 1+830

Comentarios:

Puente de acceso al cuartel de la Guardia Civil.

Pk 1+770

Comentarios:

Tramo encauzado Rambla La Mina.

Pk 1+630

Comentarios:

Tramo encauzado Rambla La Mina.

ED. 00

Pk 1+580

Comentarios:

Tramo Rambla La Mina.


Pk 1+500

Comentarios:

Entrada al túnel de la Rambla La Mina.

Pk 0+890

Comentarios:

Salida del túnel de la Rambla La Mina.

ED. 00

Pk 0+850

Comentarios:

Tramo Rambla La Mina.

Pk 0+790

Comentarios:

Puente de la N-234 sobre la Rambla La Mina.

Pk 0+720

Comentarios:

Tramo Rambla La Mina.

ESTUDIO DE INUNDABILIDAD DEL ENTORNO DEL PUEBLO DE DAROCA - ZARAGOZA

Pk 0+650

Comentarios:

Tramo encauzado de la Rambla La Mina.

Pk 0+615

Comentarios:

Tramo encauzado de la Rambla La Mina. Inicio de salto.

Pk 0+615

Comentarios:

Salto situado en un tramo encauzado de la Rambla La Mina.

Pk 0+600

Comentarios:

Salto ubicado en tramo encauzado.

Pk 0+580

Comentarios:

Tramo encauzado de la Rambla La Mina.

En este tramo existe gran cantidad de sedimentos acumulados en el cauce.

Pk 0+530

Comentarios:

Puente sobre la Rambla La Mina.

En este tramo existe gran cantidad de sedimentos acumulados en el cauce.

ED. 00

Pk 0+500

Comentarios:

Tramo de la Rambla La Mina encauzado mediante muros de piedra reforzados con contrafuertes.

En este tramo existe gran cantidad de sedimentos acumulados en el cauce.

Pk 0+450

Comentarios:

Vista de la diferencia de cotas entre el cauce de la rambla y los campos colindantes.

Pk 0+300

Comentarios:

Cruce transversal de un camino en el tramo de la Rambla La Mina encauzado mediante muros de piedra.

Pk 0+300

Comentarios:

Rotura de los muros del cauce de la rambla para cruce de camino.

Pk 0+280

Comentarios:

Tramo de la Rambla La Mina encauzado mediante muros de piedra.

Pk 0+225

Comentarios:

Tramo de la Rambla La Mina en el que la vegetación ha invadido las márgenes del cauce disminuyendo significativamente la sección.

Pk 0+125

Comentarios:

Tramo final de la Rambla la Mina junto a naves industriales. El cauce, salvo su margen central, se encuentra con abundante vegetación arbustiva y arbórea.

Pk 0+050

Comentarios:

Punto de vertido de la Rambla La Mina al río Jiloca.

Pk 0+000

Comentarios:

Punto de vertido de la Rambla La Mina al río Jiloca.

